The current process of medical education across a physician's career is challenged by inefficiencies and inequities. Like other aspects of modern life, enhanced access to—and visualization of—data can facilitate individualization. Precision education allows educators and learners to leverage data and technology to improve the personalization of education and the efficiency of learning. Precision education demands flexibility within training programs, such that the appropriate experiences and coaching are offered to support the development of each individual.
In 2023, the American Medical Association placed a new level of strategic focus on four high-priority areas in medical education:
Precision education will drive success in each of the other priority areas. As disparate sites explore capabilities to enable precision education, the AMA will serve to coordinate efforts and promote inter-operable approaches. To fulfill our vision of precision education, enhanced data capabilities must be aligned with cultural and systems changes that promote growth orientation; this has been a focus of prior work of the ChangeMedEd® Initiative. Greater precision offers an opportunity to elevate equity, diversity and belonging by better understanding and addressing the experiences and needs of individuals.
AMA Academic Medicine supplement on precision education
AMA Academic Medicine supplement on precision education
As part of the AMA ChangeMedEd initiative’s new strategic focus on precision education, the AMA supported a supplement in the April 2024 issue of Academic Medicine entitled, “The Next Era of Assessment: Advancing Precision Education for Learners to Ensure High-Quality, Equitable Care for Patients.”
In the supplement, authors compel readers to consider a next era of assessment that places less focus on how assessment is done (e.g., tests, work-based assessment) and more focus on why it is done: to ensure high-quality, equitable care for patients.
Watch on demand: Precision Education in Medical Education: On-the-Ground Initiatives and Learnings
Watch on demand: Precision Education in Medical Education: On-the-Ground Initiatives and Learnings
This webinar features authors, Brian T. Garibaldi, MD, MEHP, and Eric Warm, MD, from the ChangeMedEd supplement in Academic Medicine who are taking novel approaches to apply precision education and use data and technology for effective assessment of learners at their own institutions. Watch now.
Watch on demand: The Next Era of Assessment: Equitable Patient Care and Precision Education for Learners
Watch on demand: The Next Era of Assessment: Equitable Patient Care and Precision Education for Learners
This webinar features guest editors from the AMA ChangeMedEd supplement in Academic Medicine and explore how the future of assessment–and the meaningful use of learning and data analytics in medical education–can focus on ensuring high quality equitable care. Watch now.
Dive deeper:
Precision education: What it is and how it's advancing med ed
Precision education: What it is and how it's advancing med ed
Earlier this year, AMA published an article on an AMA issue brief on precision education and the future of lifelong learning in medicine.
Precision education plenary session at ChangeMedEd 2023
Precision education plenary session at ChangeMedEd 2023
Presented during the September 2023 conference, this plenary reviews barriers to lifelong learning in medical education and how precision education can be an effective tool to improve the system.
Medical School Admissions: Focusing on Producing a Physician Workforce that Addresses the Needs of the United States
Medical School Admissions: Focusing on Producing a Physician Workforce that Addresses the Needs of the United States
In this invited commentary, the authors acknowledge that the current system for selecting and developing the physician workforce is severely limited by the data available at all levels. Screening processes have relied on measures of convenience that are not well aligned with the desired attributes of physicians or of educational institutions. Innovations in data science and generative artificial intelligence platforms offer an opportunity for all stakeholders to act upon more meaningful information.
Reconnect medical education to patient care
Reconnect medical education to patient care
Continuing professional development can be a source of frustration for practicing physicians with limited time. Often, structured training is not directly relevant to the physician’s practice and physicians rely heavily on just-in-time resources that may not support deeper learning.
A multi-disciplinary team at the AMA has developed Reconnect, an AI tool aiming to personalize physician lifelong learning and improve efficiency. Reconnect integrates with EHR systems (in a manner that does not transmit protected health information) to curate and deliver personalized education content relevant to a physician’s patient panel.
The algorithm identifies multivariate nuances within patient records and trends within a physician’s practice pattern to elevate appropriate learning resources in anticipation of upcoming clinic sessions. High-yield ongoing learning is the focus; this tool does not involve recommendations regarding the care of individual patients. The concept and prototype were developed over three years and is being piloted with health systems to test feasibility. Future study and refinement will pursue long term goals of enhancing physician well-being and improving care of patients.
The TRainee Attributable & Automated Care Evaluations in Real-Time (TRACERs) Project
The TRainee Attributable & Automated Care Evaluations in Real-Time (TRACERs) Project
This project builds on the concept of resident-sensitive quality measures (RSQMs). These are clinical care measures that are both important for patient care and highly attributable to an individual resident (rather than the team, system or patient). This project introduces the concept of TRainee Attributable & Automated Care Evaluations in Real-Time (TRACERs), which are characterized as: meaningful for patient care and trainees; sufficiently attributable to the trainee of interest; automatable, meaning there is minimal human input needed once fully implemented; scalable across electronic health records (EHRs) and training environments; and amendable in real-time to formative educational feedback loops.
TRACERs builds upon RSQM research by automating the previously labor-intensive process of EHR data extraction and exploring how to make such measures scalable across institutions. This undertaking is a collaboration between researchers from the University of Cincinnati College of Medicine, NYU Grossman School of Medicine and Stanford University School of Medicine.