

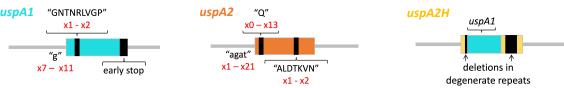
Genomic Adaptation of *Moraxella catarrhalis* During Persistence in the Airways of COPD Patients

Marielisa Cabrera-Sánchez¹, Timothy F. Murphy², Charmaine Kirkham², Hervé Tettelin³

¹University of Puerto Rico School of Medicine ²Jacobs School of Medicine at the University at Buffalo ³University of Maryland School of Medicine

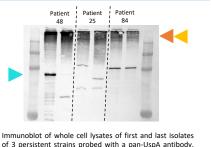
Introduction

Chronic Obstructive Pulmonary Disease (COPD) is the 3rd leading cause of death worldwide1.


Moraxella catarrhalis (M. cat) persists in the airways of COPD patients and contributes to progressive decline in lung function².

Ubiquitous surface proteins UspA1, UspA2, and UspA2H are virulence factors that mediate adherence, aggregation and complement adherence³.

Hypothesis


M. cat adapts by altering its genome during persistence in the airways of COPD patients.

1. Genes altered during persistence

2. Trends in genomic adaptation and expression

Repeat	Change	# of strains	Effect on expression	Western Blot example
"g" upstream <i>uspA1</i>	No changes	24		
	x12> x8	13	Decreases	Patient 48
	Increase	4		
"agat" upstream <u>uspA2</u>	No changes	8		
	x16> x11	9	No change	Patient 25
	x16> x21	11	No change	Patient 84
"Q" in uspA2	x4> x4	9	No change	Patient 84
	Decrease	0		
	Increase	0		
"ALDTKVN" in uspA2 & upsA2H	x2> x2	63	No change	Patient 25
	Decrease	0		
	Increase	0		

Arrows indicate regions where UspA1, UspA2, and

UspA2H are found.

Conclusions

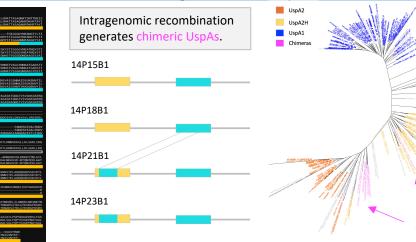
Overall:

Genomic repeat variations of *uspA1*, *uspA2*, and uspA2H alter expression of their encoded surface proteins and facilitate *M. cat* persistence in the airways of COPD patients.

Specific novel findings:

- "Q" and "ALDTKVN" are novel repeats identified in uspA2 that may be crucial for immunogenicity.
- *M. cat* reduces the expression of *uspA1* by altering the "g" repeat in the promoter.
- Contrary to prior reports, changes in upstream "agat" repeats don't alter uspA2 expression in-vivo.
- First report of intragenomic recombination as a mechanism that gives rise to chimeric UspAs.

Methods



Isolated 78 persistent *M. cat* strains from COPD patients during a 20-yr prospective study at Buffalo VA Medical Center.

- Sequenced complete genomes of sequential isolates of selected M. cat strains.
 - Genomic, protein and phylogenic analysis using bioinformatic tools.
- Western Blots of whole cell lysates probed with a pan-UspA antibody.

3. Mechanism for genomic adaptation

Discover how M. can persists in the airways of COPD patients.

Chimeras

bout 5% of UspA

and UspA2H

Develop treatments and vaccines against M. cat, targeting molecules that mediate persistence.

Decrease morbidity and mortality of COPD patients.

Acknowledgements

This study was supported by NIH grants T35 Al089693 and R01 Al19461, and the Department of Veteran Affairs.

References

- The top 10 causes of death. World Health Organization. https://www.who.int/news-room/fact-sheets/det causes-of-death. Published December 9, 2020. Accessed September 19, 2021. Murphy TF, Brauer AL, Grant BJ, Sethi S. Moraxella Catarrhalisin chronic obstructive pulmonary dis
- of Respiratory and Critical Care Medicine. 2005;172(2):195-199. doi:10.1164/rccm.200412-1747oc
- afontaine FR. Cone LD. Aehi C. Latimer II. McCracken GH. Hansen FJ. The LISPA1 protein and a second type of LISPA2 protein mediate adherence of Moraxella catarrhalis to human epithelial cells in vitro. Journal of Bacteriolo 2000;182(5):1364-1373. doi:10.1128/jb.182.5.1364-1373.2000