The Aryl Hydrocarbon Receptor (AhR) as a Novel Therapeutic Target in Neuroblastoma
Kanita A. Chaudhry1,2 and Anna Bianchi-Smiraglia1

1Roswell Park Comprehensive Cancer Center 2Jacobs School of Medicine, University at Buffalo

Introduction

- Neuroblastoma is the most common extracranial tumor in children1.
- ~50% of high-risk patients die from relapses due to retinoic acid therapy resistance2,3.
- MYCN amplification correlates with poor response to retinoid therapies, but MycN is "undruggable."4
- The aryl hydrocarbon receptor (AhR) is a transcription factor that modulates Myc in other cancers5, but its role in neuroblastoma is poorly understood.

Hypothesis

AhR is a novel tumor promoter that regulates MycN and alters retinoic acid treatment efficacy in neuroblastoma.

Methods

- Genetically under-express AhR with shRNA or treat human neuroblastoma cells with the novel AhR antagonist, clofazimine (CLF)
- Assess:
 - Tumorigenicity by colony formation and in vivo tumor growth
 - AhR-MycN regulation by Western blot
 - Retinoic acid efficacy by microscopy

Conclusions

- AhR is a previously unrecognized and novel tumor promoter in neuroblastoma.
- AhR inhibition with CLF decreases neuroblastoma growth and MycN levels and augments retinoic acid therapy-induced differentiation.

Significance

- AhR is a novel therapeutic target in neuroblastoma.
- CLF, an FDA-approved novel AhR antagonist, is non-toxic, orally bioavailable & inexpensive6, representing a potential promising new neuroblastoma therapy.

Acknowledgements

This work was supported by Roswell Park Start-Up Funds and Roswell Park Alliance Foundation Grant (A.B.S.)

References