As the epidemic of opioid use in the United States continues to shift from prescription opioids to illicit drugs, more people living with opioid use disorder are encountering the criminal justice system. Most US correctional facilities do not continue or initiate medications for addiction treatment (MAT). This is especially unfortunate given the higher rates of opioid overdose immediately after release from incarceration.

In July 2016, a new model of screening and protocolized treatment with MAT (including methadone, buprenorphine, or naltrexone) launched at the Rhode Island Department of Corrections (RIDOC), a unified prison/jail. A community vendor with statewide capacity to provide MAT after release was engaged to help run the program in November 2016, and all sites were operational by January 2017. Individuals arriving into RIDOC while receiving MAT were to be maintained on their respective medications regimen without tapering or discontinuing their medications. Contemporaneously, a system of 12 community-located Centers of Excellence in MAT was established to promote transitions and referrals of inmates released from RIDOC. This analysis examines preliminary association of the program with overall overdose fatalities and deaths from overdose among those individuals who were recently incarcerated.

Methods

We conducted a retrospective cohort analysis linking data from the Rhode Island Office of State Medical Examiners for all unintentional deaths from overdose occurring from January 1 to June 30, 2016, and from January 1 to June 30, 2017, to data from RIDOC inmate releases. Decedents were defined as individuals who were recently incarcerated if they died within 12 months of release from RIDOC. Descriptive statistics of decedents include summarized demographics, the status of incarceration, and the number of fentanyl-related overdoses. Aggregate data of inmates released from RIDOC, counts of naloxone provided to inmates after release, and the monthly receipt of MAT were also reported. Risk ratios (RRs) and 95% CIs were used to compare the proportion of decedents who were recently incarcerated in 2017 with those who were incarcerated in 2016, since individual-level MAT program enrollment data were unavailable. The number needed to treat was estimated from the risk difference of recent incarceration between the 2 periods. χ² Tests compared differences in decedent characteristics between 2016 and 2017. Statistical analysis was performed using SAS program, version 9.3 (SAS Institute Inc) with 2-sided P < .05 considered statistically significant. The Rhode Island Hospital institutional review board approved this protocol with a waiver of written informed consent.

Results

Statewide in Rhode Island, there were 179 overdose deaths from January 1, 2016, to June 30, 2016, compared with 157 overdose deaths during the same period in 2017, a reduc-

Table 1. Characteristics and Number of Deaths From Accidental Overdose in Rhode Island, Both Overall and Among Individuals With Recent Incarceration

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Decedents With Recent Incarceration, No. (%)</th>
<th>Overall No. of Decedents (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First 6 mo of 2016 (n = 26)</td>
<td>First 6 mo of 2017 (n = 9)</td>
</tr>
<tr>
<td></td>
<td>First 6 mo of 2016 (n = 179)</td>
<td>First 6 mo of 2017 (n = 157)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>24 (92.3)</td>
<td>123 (68.7)</td>
</tr>
<tr>
<td>Female</td>
<td>2 (7.7)</td>
<td>56 (31.3)</td>
</tr>
<tr>
<td>Race/ethnicity(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>25 (96.2)</td>
<td>168 (93.9)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (3.8)</td>
<td>11 (6.1)</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>8 (30.8)</td>
<td>43 (24.0)</td>
</tr>
<tr>
<td>30-39</td>
<td>9 (34.6)</td>
<td>34 (19.0)</td>
</tr>
<tr>
<td>40-49</td>
<td>6 (23.1)</td>
<td>40 (22.3)</td>
</tr>
<tr>
<td>≥50</td>
<td>3 (11.5)</td>
<td>62 (34.6)</td>
</tr>
<tr>
<td>Died of overdose attributed to fentanyl</td>
<td>16 (61.5)</td>
<td>92 (51.4)</td>
</tr>
<tr>
<td>Length of incarceration, median (IQR), mo</td>
<td>30 (4-70)</td>
<td>NA</td>
</tr>
<tr>
<td>Time since release from incarceration to death, median (IQR), d</td>
<td>112 (12-223)</td>
<td>NA</td>
</tr>
<tr>
<td>Died within 30 d of release from incarceration</td>
<td>10 (38.5)</td>
<td>1 (11.1)</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; NA, not applicable.

\(^a\) Recent incarceration was defined as within 12 months of release from the Rhode Island Department of Corrections.
\(^b\) Race as recorded by the Rhode Island Office of State Medical Examiners at the time of autopsy or case review.
\(^c\) χ² Test comparing all decedents, January 1 to June 30, 2016, vs January 1 to June 30, 2017, P = .04.
\(^d\) χ² Test comparing all decedents, January 1 to June 30, 2016, vs January 1 to June 30, 2017, P = .007.
Identification and treatment of opioid use disorder in criminal justice settings with a linkage to medication and supportive care after release from incarceration is a promising strategy to rapidly address the high rates of overdose and opioid use disorder in the community.

Traci C. Green, PhD, MSc
Jennifer Clarke, MD
Lauren Brinkley-Rubinstein, PhD
Brandon D. L. Marshall, PhD
Nicole Alexander-Scott, MD, MPH
Rebecca Boss, MA
Josiah D. Rich, MD, MPH

Author Affiliations: Department of Emergency Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island (Green); Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island (Green, Marshall, Rich); Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island (Green, Clarke, Rich); Department of Emergency Medicine, Boston Medical Center, Boston, Massachusetts (Green); Rhode Island Department of Corrections, Cranston (Clarke); Department of Obstetrics and Gynecology, The Warren Alpert Medical School of Brown University, Providence, Rhode Island (Clarke); Department of Social Medicine, University of North Carolina, Chapel Hill (Brinkley-Rubinstein); Rhode Island Department of Health, Providence (Alexander-Scott); Rhode Island Department of Behavioral Health, Disabilities, and Hospitals, Cranston (Boss); Center for Prisoner Health and Human Rights, The Miriam Hospital, Providence, Rhode Island (Rich).

Corresponding Author: Traci C. Green, PhD, MSc, Department of Emergency Medicine, The Warren Alpert Medical School of Brown University, 55 Claverick St, Second Floor, Providence, RI 02903 (traci.c.green@gmail.com).

Accepted for Publication: December 15, 2017.

Published Online: February 14, 2018. doi: 10.1001/jamapsychiatry.2017.4614

Author Contributions: Drs Green and Marshall had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Green, Clarke, Boss, Rich.

Acquisition, analysis, or interpretation of data: Green, Clarke, Brinkley-Rubinstein, Marshall, Alexander-Scott, Rich.

Drafting of the manuscript: Green, Brinkley-Rubinstein, Marshall, Boss.

Critical revision of the manuscript for important intellectual content: Green, Clarke, Brinkley-Rubinstein, Marshall, Alexander-Scott, Rich.

Statistical analysis: Green, Clarke, Marshall.

Obtained funding: Brinkley-Rubinstein, Rich

Administrative, technical, or material support: Green, Clarke, Brinkley-Rubinstein, Alexander-Scott, Boss, Rich.

Study supervision: Green, Marshall, Alexander-Scott, Rich.

Conflict of Interest Disclosures: Dr Rich reports previous ownership of stock in Akermens within the past 3 years. No other disclosures were reported.

Funding/Support: This study was supported in part by grant NU17CE002740 under the Prescription Drug Overdose Prevention for States program from the Centers for Disease Control and Prevention and by grants K24 DA022112, R21 DA044443, T32 DA010911, and P30 AA042583 from the National Institutes of Health.

Role of the Funder/Sponsor: The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: Maxwell Krieger, MS, and Alexandria Macmadu, MPH (both of Brown University School of Public Health), provided research and administrative assistance in data management. Mr Krieger also assisted in the preparation of the data linkages. Rosemarie A. Martin, PhD (Brown University School of Public Health), assisted in review of the manuscript. The acknowledged individuals did not receive financial compensation for their work.

COMMENT & RESPONSE

Mendelian Randomization Concerns

To the Editor With interest we read the article by Hartwig et al.1 The authors used 2-sample mendelian randomization2 to investigate the role of C-reactive protein (CRP) in schizophrenia. Their main finding listed in the abstract and body is a pooled odds ratio estimate of 0.9 (random effects 95% CI, 0.84-0.97; P = .005) per 2-fold increment in CRP levels in their inverse variance-weighted random-effects model.

First, by comparing the input CRP-associated single-nucleotide polymorphism (SNP) data from the original CRP genome-wide study3 (see eTable 2 in the Supplement by Hartwig et al1), it came to our attention that the effect allele at rs9987289, the only variant “classified as influential,”1 differs between the studies by Hartwig et al2 and Dehghan et al3. We invite the authors to comment on their choosing the G allele as the effect allele instead of using the data in Table 2 of Dehghan et al3.

Second, the authors refer to a study by Prins et al4 in which mendelian randomization analyses were performed using genetic risk scores of liberal CRP-associated SNPs as instrumental variables also in schizophrenia. These genetic risk scores are derived from the original CRP study,3 the same data resource Hartwig et al1 used. Both groups extracted 18 SNPs. Prins et al4 did not extract 3 SNPs from Psychiatric Genomics Consortium schizophrenia summary statistics, resulting in 15 SNPs for their actual analyses. Aiming to elucidate the true effect size for CRP-associated SNPs in risk for schizophrenia, we tried to replicate both articles’ findings. To that end, we applied our own scripts (https://github.com/Bochao1/MR_CRP_SCZ) and the R packages TwoSampleMR and MendelianRandomization to perform the same inverse variance-weighted random-effects model as used by Hartwig et al1 for their main finding, as well as 3 of their 4 other models. To get odds ratio estimates for schizophrenia per 2-fold CRP increments, we used the same equation1 as follows:

\[\left(\frac{\hat{p}}{\hat{p}^*} \right)^2 \]

However, neither when considering G at rs9987289 as the effect allele nor when considering A as the effect allele did we obtain equal inverse variance-weighted random-effects results to Hartwig et al1 (odds ratio, 0.90 per 2-fold CRP increment; 95% CI, 0.85-0.96; P = .001; and odds ratio, 0.93; 95% CI, 0.86-0.99; P = .030, respectively).3

Our findings hint that the actual effect size for CRP-associated SNPs to increase risk of schizophrenia may differ from the findings of Hartwig et al.1 To improve future replication opportunities, we propose that authors refer to publicly accessible statistical analysis codes (eg, https://github.com/) and R packages and outline their data extraction procedures.

Bochao Danae Lin, PhD
Yue Li, MSc
Jurjen Luykx, MD, PhD

Conflict of Interest Disclosures: None reported.

In Reply The comments by Lin et al on our mendelian randomization analysis of the association of circulating C-reactive protein (CRP) with schizophrenia risk1 indicate their concern over the proper extraction and harmonization of data within 2-sample mendelian randomization studies. We agree that this is an important topic4 that is vital for ensuring the reproducibility and reliability of scientific findings, and we appreciate the opportunity to provide some clarifications.

Specifically, they questioned why we considered the G allele, rather than the A allele, as the effect allele for the rs9987289 variant (one of the CRP instruments). It is true that the A allele was indicated as the effect allele in Table 2 of the study by Dehghan et al3, which shows summary association results for the replication and discovery plus replication stages. Table 1 in the study by Dehghan et al3 indicates that the G allele was the effect allele in the discovery stage. They reported...