REPORT 3 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (I-16) Genome Editing and its Potential Clinical Use (Reference Committee K)

EXECUTIVE SUMMARY

<u>Objectives.</u> The promise of gene therapy has increased substantially over the last decade due to rapid advancements in two technologies: DNA sequencing and genome engineering. Concurrently, techniques have been discovered that allow modification of the genome with a level of efficiency and precision that had not previously been achieved. One such technique, termed CRISPR-Cas9, has triggered a surge of research efforts to harness it for correcting mutations that are disease-causing, and to understand how it could be used as a therapeutic intervention in individuals with disease. Along with the scientific and medical advances in genome editing, ethical concerns also are evident, especially about the permanent editing of fertilized embryos. The Council on Science and Public Health has initiated this report to inform physicians and the House of Delegates about the remarkable advances in genome editing seen in recent years and its potential clinical applications in gene therapy, as well as concerns about it and proposals to ensure its responsible use.

<u>Data Sources.</u> Literature searches were conducted in the PubMed database for English-language articles published between 2006 and 2016 using the search terms "gene editing," "genome editing," and "CRISPR." To capture reports not indexed on PubMed, a Google search was conducted using the same search terms. Genome editing information posted on the websites of the National Academies of Sciences, Engineering, and Medicine and the American Society of Human Genetics also was reviewed. Additional articles were identified by manual review of the references cited in these publications.

<u>Results.</u> Progress in gene therapy is likely to accelerate with the CRISPR-Cas9 genome editing techniques, which allows for precise and permanent modification of the genome without the complications that accompany other gene therapy techniques. The most immediate uses of genome editing have been in biomedical research settings. However, the relative ease of using CRISPR-Cas9 and other programmable nucleases has triggered the modeling of human disease and proof-of-concept studies in a number of species and in human cell lines. Early phase clinical trials are beginning to test genome editing as a therapeutic tool in select diseases. Translation of applications to the clinic will require the careful consideration of a number of factors, including the safety of the technology, its possible use in editing the germline, and high costs that could result in access problems and health disparities.

<u>Conclusions.</u> The last few years have seen unprecedented progress in the development of genome editing mechanisms and their potential applications for gene therapy. Much work remains to ensure the safety and effectiveness of genome editing, and questions remain about the appropriate use of germline editing. The Council supports continued research into the clinical applications of genome editing, but urges caution and thoughtful consideration before clinical germline editing is undertaken.

REPORT OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH

CSAPH Report 3-I-16

Subject:Genome Editing and its Potential Clinical UsePresented by:Bobby Mukkamala, MD, ChairReferred to:Reference Committee K
(Paul A. Friedrichs, MD, Chair)

1 BACKGROUND

2 3 The promise of gene therapy has increased substantially over the last decade due to rapid 4 advancements in two technologies: DNA sequencing and genome engineering. Next-generation DNA sequencing techniques, reviewed by this Council in 2012, have allowed analysis of the 5 genome and discovery of the genetic basis of disease with unprecedented speed and accuracy.^{1,2} 6 7 Concurrently, techniques have been discovered that allow modification of the genome with a level 8 of efficiency and precision that had not previously been achieved.³ One such technique, termed CRISPR-Cas9,⁴ has triggered a surge of research efforts to harness it for correcting mutations that 9 are disease-causing, and to understand how it could be used as a therapeutic intervention in 10 individuals with disease.⁵ Along with the scientific and medical advances in genome editing, 11 ethical concerns also are evident, especially about the permanent editing of fertilized embryos. 12 13 altering the genome of every differentiated cell that arises from that embryo and the offspring of that individual.⁶ 14 15 The Council on Science and Public Health has initiated this report to inform physicians and the 16 House of Delegates about the remarkable advances in genome editing seen in recent years and its 17 18 potential clinical applications in gene therapy, as well as concerns about it and proposals to ensure 19 its responsible use. 20 21 **METHODS** 22 23 Literature searches were conducted in the PubMed database for English-language articles published 24 between 2006 and 2016 using the search terms "gene editing," "genome editing," and "CRISPR." To capture reports not indexed on PubMed, a Google search was conducted using the same search 25 terms. Genome editing information posted on the websites of the National Academies of Sciences. 26 27 Engineering, and Medicine and the American Society of Human Genetics also was reviewed. Additional articles were identified by manual review of the references cited in these publications. 28 29 30 GENE THERAPY 31 32 The concept of gene therapy, broadly defined as the use of genes or other genetic sequences to counteract or replace malfunctioning genes that cause disease, arose decades ago. Yet it has been 33 34 slow in becoming a widespread therapeutic option, due in part to the complex mechanisms required

© 2016 American Medical Association. All rights reserved.

Action of the AMA House of Delegates 2016 Interim Meeting: Council on Science and Public Health Report 2 Recommendations Adopted, and Remainder of Report Filed.

to deliver genetic material to the cell and drive appropriately timed therapeutic gene expression, 1 2 while avoiding the disruption of endogenous cellular function.⁷ The first successful attempt at gene 3 therapy occurred in the early 1990s in two children with severe combined immune deficiency 4 (SCID) caused by defects in the adenosine deaminase (ADA) gene. Normal copies of the ADA 5 gene were inserted into their T-cells at repeated time points, resulting in sustained immune function.⁸ Other gene therapy trials in the 1990s and 2000s were considered successful, but they 6 7 were small, early-phase trials, and limited to only a few participants with very rare genetic diseases 8 that were well characterized at the time. Challenges to using gene therapy more widely persisted, 9 including the transient expression of genes inserted to the cell but not permanently into the cell's 10 genomic DNA (called "transgenes"), requiring continual therapy; limitations in the ability of viral 11 vectors to deliver functional genes to cells; insertional mutagenesis, the propensity of genetic

12 sequences to randomly insert into genomic DNA, causing mutations and resultant disease; and

- 13 immune responses to the introduced foreign DNA.^{7,9}
- 14

15 Nevertheless, research to overcome gene therapy barriers continued, and important successes have been realized. In 2015, it was reported that gene therapy was successful in several patients with 16 17 Wiskott-Aldrich syndrome (WAS), a severe primary immunodeficiency caused by mutations in the 18 WAS gene.¹⁰ The trial was one of the first to use an engineered viral vector that could limit insertional mutagenesis and reduce associated complications. Other gene therapy successes have 19 included the use of modified T-cells to treat relapses in acute lymphoblastic leukemia;¹¹ restoration 20 of vision in patients with Leber congenital amaurosis, an inherited abnormality of the retina that 21 causes blindness;¹² and reduction of bleeding episodes in patients with severe hemophilia B.¹³ 22 23 Another milestone was achieved in 2012 with the approval by the European Medicines Agency (EMA) of the first gene therapy product available in Europe. Alipogene tiparvovec, marketed as 24 Glybera, is designed for the treatment of the rare disease lipoprotein lipase deficiency.¹⁴ This year, 25 the EMA also approved Strimvelis, a gene therapy product for the treatment of ADA-caused 26 SCID.^{15,16} No human gene therapy products have been approved to date by the FDA, although 27 development of products is underway in the biotechnology industry.¹⁷ 28

29

30 Genome Editing

31

32 Progress in gene therapy is likely to accelerate with newly discovered techniques that allow for precise and permanent modification of the genome without the complications that accompany other 33 34 gene therapy techniques. The risk for insertional mutagenesis is drastically reduced because the therapeutic genetic sequences used are engineered to insert into the cell's genomic DNA at precise 35 36 locations.⁷ Additionally, because the therapeutic sequence is inserted into the cell's genomic DNA 37 rather than being expressed as a transgene, expression of it can be more tightly controlled.⁷ Termed "genome editing" or "genome engineering," these techniques are being tested for gene therapy 38 39 applications that could correct or inactivate disease-causing mutations, introduce protective mutations, insert functional genes, or disrupt foreign DNA (such as that present in viral or bacterial 40 infections).¹⁸ 41

42

43 HOW DOES GENOME EDITING WORK?

44

45 DNA Editing

46

47 The genome editing process is illustrated in the Figure (see page 14). It is dependent on an

48 engineered DNA-cleaving enzyme (a nuclease) that is programmed to cut genomic DNA at specific

- 49 locations. Four major classes of nucleases can be engineered for site-specific editing; of these four
- 50 classes, the CRISPR-Cas9 class can be easily targeted to almost any location in the genome and $\frac{19}{2}$
- 51 carries out its nuclease activity most efficiently.¹⁹ The Cas9 nuclease was first discovered in

1 bacterial adaptive immunity experiments. Bacterial genomes carry DNA sequences called

2 "clustered regularly interspaced short palindromic repeats" (or "CRISPR"), which are located in

3 close proximity to the coding sequence of a CRISPR-associated ("Cas") DNA-cleaving enzyme. In

- 4 bacteria, the CRISPR sequences act as guides for Cas9's nuclease activity, providing a defense
- 5 mechanism against phage infection.¹⁹ Further studies demonstrated that Cas9 could be engineered

to cleave the DNA of many organisms' cells, including humans', at specific locations by providing
 it with the correct guide.^{19,20}

8

9 Once Cas9 is engineered to cleave genomic DNA at a specific location, it can be inserted into the 10 cell to carry out its nuclease activity. It finds the location it has been engineered to recognize and 11 cuts both strands of the DNA (Figure). When the DNA strand is cut, the cell uses its own DNA 12 repair mechanisms to attempt to repair the cut. Two different repair mechanisms result in different 13 outcomes. In one mechanism, called non-homologous end joining (NHEJ), the two ends of the DNA strand that have been cut are directly rejoined.¹⁸ However, this process is often inaccurate and 14 15 results in the insertion or deletion of a small number of nucleotides, disrupting normal gene 16 function (Figure). This is the genome editing mechanism used to inactivate a gene. By cutting a 17 gene in its coding region and forcing repair through NHEJ, the small insertions or deletions that occur in the coding region suppress gene function or inactivate the gene altogether.¹⁸ An example 18 of the way in which this type of genome editing could be used therapeutically is in sickle cell 19 20 disease.³ Sickle cell disease is caused by mutations in the *HBB* gene, which render γ -globin dysfunctional. Functional γ -globin can be restored by upregulating the expression of the *HBG* gene. 21 22 However, *HBG* is suppressed by the gene *Bcl11A*. By using genome editing to inactivate *Bcl11A*, 23 *HBG* gene function is activated and γ -globin expression can be restored.³

24

25 The other repair mechanism used by cells after the DNA strand has been cut is called homologous recombination (HR). In HR, the cell uses a DNA fragment that exactly matches the sequences 26 27 surrounding the cut as a template to direct repair (Figure). Genome editing takes advantage of the 28 use of these DNA fragments to direct repair; an exogenous DNA fragment containing a new gene 29 or a corrected sequence of nucleotides, along with sequences that match those surrounding the site of the DNA cut, is inserted into the cell along with Cas9.¹⁸ When Cas9 cuts the DNA in the 30 location it has been engineered to recognize, the cell uses the exogenous DNA fragments as a 31 32 template to repair the cut (Figure). This is the genome editing mechanism that is used to correct a mutation or insert a functional gene. The exogenous DNA repair fragment can be engineered to 33 34 carry a correction to a mutation or a new functional gene that will be incorporated into the genome. 35 In the example of sickle cell disease discussed above, this method could be used to either correct 36 the mutation in the *HBB* gene, or insert a functional *HBB* gene in another location, restoring γ -37 globin expression.³

38

39 Delivery mechanisms

40

41 For genome editing to occur, the engineered nuclease has to be introduced into target cells. This 42 can occur either ex vivo or in vivo. In ex vivo delivery, a portion of the cell population that is 43 targeted for editing is removed from the body, undergoes genome editing, and then is returned to 44 the host. In this mechanism, the engineered nuclease and DNA repair fragments (for HR editing) 45 can be introduced into the cultured target cells through several methods, including electroporation, 46 a pulse of electricity that briefly opens pores in the cell membrane to allow the nuclease and DNA repair fragments to enter; or non-pathogenic viruses that insert the nuclease and DNA repair 47 fragments directly into the cell.¹⁸ Ex vivo delivery results in high editing rates, and therefore is 48 49 often used for gene therapy applications. However, because it is difficult for some target cell 50 populations to survive manipulation outside of the body, ex vivo delivery is usually limited to

- 1 tissues with adult stem cell populations that are amenable to culture and manipulation, such as
- 2 those from the hematopoietic system.¹⁸

3 In *in vivo* delivery, the engineered nuclease and DNA repair fragments are delivered to targeted 4 cells in their native environment within the body. This has been achieved by using non-pathogenic 5 viral vectors with affinity for the target tissue; the viruses are packaged with the nuclease and the 6 DNA repair fragments (for HR editing), which are deposited directly into the cell when the virus 7 "infects" it.¹⁸ In vivo delivery is preferred when the target tissue is not amenable to culture or 8 manipulation outside of the body. It can also be used to efficiently target multiple tissue types, 9 allowing for its therapeutic use in a wider range of diseases.¹⁸ However, the viruses that can be used as vectors are sometimes limited in their affinity for multiple tissue types, and while they are 10 11 non-pathogenic, the amount of virus necessary for use in therapeutic genome editing may induce an 12 immune response.¹⁸ 13

14 15

CLINICAL APPLICATIONS OF GENOME EDITING

The most immediate uses of genome editing have been in biomedical research settings. The relative ease of using the CRISPR-Cas9 system, as well as other programmable nucleases, has triggered the modeling of human disease and proof-of-concept studies in a number of species and in human cell lines.²¹ A few experimental uses have progressed to early clinical trial stages in humans. Selected examples that are most promising for gene therapy are discussed in this section.

- 21
- 22 Monogenic Disorders

23

Nearly 8,000 diseases are monogenic, i.e., caused by mutations in single genes.³ Many of these 24 diseases are candidates for gene editing because, simplistically speaking, the modification needed 25 26 is only in one gene. At this time, successful genome editing for several monogenic diseases has 27 been achieved in model organisms. For example, in a mouse model of Duchenne muscular 28 dystrophy (DMD), which mimics the human form of DMD with a mutation in the dystrophin gene, a viral vector was used to deliver Cas9 in vivo to mouse muscle cells.²²⁻²⁵ The Cas9 was engineered 29 30 to cut the *dystrophin* gene in two places flanking the mutation, thereby removing the mutation from the cells' genomic DNA, then the cut ends of *dystrophin* were repaired by the NHEJ mechanism.²²⁻ 31 32 The technique only partially restored Dystrophin protein function, but it was enough to restore 33 partial muscle function in the mice. Particularly exciting was the finding that gene editing occurred in satellite cells, stem cells that are present in muscle, implying that the satellite cells could 34 35 populate the muscles with cells carrying the partially repaired *dystrophin* gene.²⁵

36

Preclinical studies using genome editing to correct the mutations that cause cystic fibrosis have also been promising. Organoids are small amounts of functional tissue derived from human stem cells. In intestinal organoid tissue derived from patients carrying mutations in the *CFTR* gene, which causes cystic fibrosis, the CRISPR-Cas9 system was used to correct the mutations through the HR mechanism.²⁶ The corrected *CFTR* was fully functional and was able to "rescue" the cystic fibrosis phenotype in the organoids.²⁶ Together with other experiments showing that cultured intestinal organoids can be transplanted into and become functional in the colons of mice,²⁷ this

- 44 provides a potential strategy for gene therapy in patients with cystic fibrosis.
- 45

46 Other studies demonstrated successful proof-of-concept results using genome editing for the

- 47 treatment of many other monogenic diseases, including hemophilia B, hereditary tyrosinemia,
- 48 ADA-caused SCID, sickle cell disease, and β -thalassemia.^{3,18,19} The biotechnology company Editas
- 49 has stated that it will begin a clinical trial in 2017 using CRISPR-Cas9 as a gene therapy
- 50 mechanism to correct mutations causing Leber congenital amaurosis.²⁸

1 Cancers

2

3 With more than 1.5 million cases of cancer diagnosed and half a million deaths from cancer each 4 year,²⁹ the prospect of treating cancer using genome editing-based technologies is appealing. However, it is widely thought that direct repair of acquired or inherited mutations in cancer cells 5 would not be effective.¹⁸ Mutations in cancer cells give them a fitness advantage over non-6 7 cancerous cells, i.e., they divide quickly and do not respond to the cells' signals to halt growth or 8 self-destruct. Even the most efficient genome editing could not repair every cancer cell present in a 9 tissue or throughout the body, so cancer cells with repaired mutations would quickly be 10 outcompeted by their non-repaired counterparts, rendering the therapy ineffective.¹⁸ 11 12 Despite the inability to directly correct mutations in cancer cells, research has shown exciting results using engineered T-cells to harness the immune system's ability to fight cancer. T-cells are 13 14 harvested from patients with certain types of cancer, engineered to express receptors that have specific and strong affinity for tumor antigens, and then infused back into patients, where they 15 attack tumor cells.^{30,31} This technique has been the most successful in trials for melanomas and 16 17 leukemias and lymphomas of B-cell origin.³¹ 18 Genome editing is now being explored as a technique to engineer T-cells that more stably and

19 20 permanently express the receptors that target them to cancer cells. In June 2016, the National 21 Institutes of Health approved a proposal to use the CRISPR-Cas9 system to edit T-cells from patients with one of three cancer types: multiple myeloma, sarcoma, or melanoma.³² The genome 22 23 editing will include inserting a gene that helps the T-cells better recognize cancer cells, inactivating a gene that interferes with the recognition process, and inactivating a gene that allows cancer cells 24 to prevent T-cell attacks.³² Recruitment could begin late in 2016, once FDA and institutional 25 review board approval are granted.³³ Another trial using genome-edited T-cells is set to begin this 26 year in China in patients who have metastatic non-small cell lung cancer and for whom 27 28 chemotherapy, radiation therapy, and other treatments have failed. In that trial, CRISPR-Cas9 will 29 be used to inactivate the gene that encodes PD-1, which normally acts as a check on the cell's capacity to launch an immune response.³⁴ 30

31

32 Non-Genetic Disorders

33

34 In addition to the use of genome editing to correct diseases caused by genetic mutations, it also is 35 being investigated for use in treating infectious diseases and a variety of other health conditions. 36 For example, the discovery that patients who carry mutations disabling the HIV receptor CCR5 are 37 nearly completely resistant to HIV infection provided the basis for a genome editing-based clinical 38 trial for treating HIV. A small, early-phase clinical trial removed T-cells from patients with HIV, 39 used an engineered nuclease to mutate the CCR5 gene, and then transplanted the edited T-cells back into the patients.^{3,18,35} Preliminary results showed that in the majority of patients receiving the 40 edited T-cells, HIV DNA levels in the blood decreased, and in one patient, HIV was undetectable.³⁵ 41 42 Unlike the fitness disadvantage that directly edited cancer cells have when compared to their non-43 edited counterparts, T-cells with the edited CCR5 gene have a fitness advantage over the nonedited T-cells; in the trial, the edited T-cell population had lower rates of cell death than did non-44 edited T-cells, suggesting that they are more stable.³⁵ Complete removal of the virus will be 45 challenging, however, and will depend on extremely efficient delivery and editing strategies;¹⁸ 46 47 phase II trials are now ongoing to test such strategies. Similar genome editing mechanisms have also shown promising results in treating hepatitis B virus infection.^{36,37} 48

1 2 Genome editing also is being explored as a therapy to reduce cardiovascular disease risk. The gene 3 *PCSK9* was recently discovered as a modulator of LDL cholesterol function. People carrying 4 dominant gain-of-function mutations in *PCSK9* have highly elevated LDL level and premature 5 coronary heart disease, and those carrying homozygous loss-of-function mutations have a nearly 80 percent reduction in LDL level with no apparent adverse clinical consequences.^{38,39} PCSK9-6 7 targeting monoclonal antibodies are currently being tested in clinical trials as LDL-lowering 8 therapies.⁴⁰ Genome editing of *PCSK9* has been tested in the pre-clinical setting. A viral vector was 9 used for *in vivo* delivery of Cas9, engineered to introduce mutations in the PCSK9 gene using the 10 NHEJ mechanism, to liver cells of mice.⁴¹ Editing occurred in more than half of the liver cells, and resulted in a 35-40 percent reduction in total cholesterol and reduced LDL plasma fractions.⁴¹ This 11 12 study has contributed to the notion that the future of cholesterol management may first be a bi-13 weekly or monthly intervention using PCSK9-inhibitor antibody drugs, then eventually become a 14 one-time intervention that permanently and selectively modifies the genome to inactivate PCSK9 15 and thereby reduce cholesterol.⁴² 16

- 17
- 18

CONSIDERATIONS BEFORE CLINICAL USE

The pace of exploration of genome editing as a potential tool for gene therapy has been rapid in recent years. However, translation of applications to the clinic will require the careful consideration of a number of factors, including the safety of the technology, its possible use in editing the germline, and high costs that could result in access problems and health disparities.

23

24 Safety

25

The specificity of engineered nucleases, i.e., their ability to cut DNA at precisely targeted positions 26 27 and avoid cutting at non-targeted locations, will be a key factor in the translation of this mechanism 28 of gene therapy into clinical practice. Genetic modifications resulting from genome editing are 29 permanent, so off-target modifications could create cells with functional impairment or even 30 oncogenic potential. CRISPR-Cas9 genome editing appears to result in only rare instances of off-31 target modification; one study estimated that one error in 300 trillion base pairs could occur, and 32 given that the human genome is only 3 billion base pairs, that equates to one off-target modification per 100,000 cells.⁴³ However, more sophisticated methods are needed for evaluating 33 34 the likelihood of off-target modification for each potential clinical use, and studies are ongoing to develop ways of preventing off-target modification.^{44,45} Clinical use of genome modification would 35 not be appropriate without mechanisms to ensure that off-target modifications are extremely rare 36 and result in negligible clinical consequence.^{18,46} 37

38

39 Another safety concern lies with using viral vectors as delivery mechanisms. Adeno-associated virus (AAV) vectors are approved for clinical use,⁴⁷ and have high delivery efficacy for a number 40 of tissue types. But AAV vectors pose some challenges. In some cases, nucleases packaged within 41 AAV vectors are constitutively active, increasing the chances of off-target modification.¹⁸Also. 42 many people who have been naturally exposed to AAV have developed immunity to it, so it may 43 not be an appropriate delivery mechanism for them.¹⁸ Immunotoxicity also may occur upon 44 exposure to certain engineered nucleases, including Cas9, since they are microbially derived.⁴⁸ 45 46 Alternative delivery systems, including lipids and nanoparticles, are being explored to avoid the potential for immunotoxicity.49,50 47

48

49 *Germline Editing*

50

The most ethically-fraught conversations about genome editing center on the use of the technology 1 2 to modify the genome of germline cells (eggs and sperm) or early-stage embryos. Such editing 3 would result in permanent modifications to the individual arising from the germline cells or 4 embryo, and would permanently change the gene pool since those modifications would be passed 5 on to future generations. Conversations about these issues took on new urgency when researchers 6 in China demonstrated that CRISPR-Cas9 could be successfully used to edit the genome of earlystage human embryos.⁵¹ The embryos used in the study were genetically incapable of maturing into 7 8 viable zygotes, and important limitations in the efficiency of CRISPR-Cas9 in human embryos 9 were discovered, but the study nonetheless illustrated the application of genome editing to human 10 embryos before ethical standards for its use have been widely promulgated. Further evidence that 11 genome editing is close to being used in human embryos comes from a study that used CRISPR-12 Cas9 to induce genome modifications in one-cell stage embryos of cynomolgus monkeys, resulting in live births.⁵² Cynomolgus monkeys are so genetically close to humans that they are often used to 13 model human disease. The genome-edited animals are now being studied to determine the 14 15 efficiency of the editing and potential health consequences stemming from it.⁵²

16

Several organizations, including the National Academies of Sciences, Engineering, and Medicine 17 18 (NASEM) and the American Society of Human Genetics (ASHG), have convened expert working 19 groups to study the issue and define principles by which germline editing should or should not 20 occur. Discussions center on the use of genome editing to treat or cure diseases for which no other 21 equally effective therapy exists, and what types of disorders are sufficiently debilitating that 22 extreme measures like genome editing are needed. The case for germline editing is most 23 compelling when both parents are homozygous for a disease-related gene variant; however, that is 24 a rare occurrence.⁵³ Another question that arises is whether genome editing has any value over preimplantation genetic diagnosis, which allows prospective parents who carry heritable disease-25 causing genes to select embryos lacking those genes.⁵⁴ Genome editing for complex polygenic 26 diseases is likely not possible because those genes usually have very weak effects on their own and 27 are often involved in a variety of physiological functions, some of which may be beneficial.^{53,54} 28 29 Discussions also focus on the potential for non-medical use of germline editing, such as for 30 selecting desirable traits, and the autonomy of parents to make genetic modifications in their 31 offspring, who themselves are not able to consent.⁵³

32

NASEM, along with the Royal Academy and the Chinese Academy of Sciences, held a summit late 33 34 in 2015 during which a committee of scientific and ethics experts discussed genome editing and developed conclusions about its use.⁵⁵ The consensus conclusions support preclinical research on 35 genome editing, as well as its use in somatic gene therapy concordant with regulatory law. 36 37 However, the committee does not support clinical use of germline editing until "(i) the relevant 38 safety and efficacy issues have been resolved, based on appropriate understanding and balancing of 39 risks, potential benefits, and alternatives, and (ii) there is broad societal consensus about the appropriateness of the proposed application."⁵⁵ The committee will complete a comprehensive 40 study of the scientific underpinnings of human genome editing technologies, their potential use in 41 biomedical research and medicine, including human germline editing, and the clinical, ethical, 42 43 legal, and social implications of their use by late 2016.⁵⁶

44

Similarly, ASHG has convened a Workgroup on the Implications of Genome Editing to craft policy 45

46 on genome editing; in addition to ASHG, the Canadian Association of Genetic Counselors,

47 International Genetic Epidemiology Society, National Society of Genetic Counselors, and

Association of Genetic Nurses and Counselors (United Kingdom and Ireland) participated in the 48

Workgroup.⁵⁷ It developed a draft policy outline that supports research into the use of germline 49

50 editing as long is does not culminate in a human pregnancy, and believes that clinical application

51 should not proceed unless, at a minimum, there is "a) a compelling medical rationale, b) an 1 evidence base that supports its clinical use, c) an ethical justification, and d) a transparent public

- 2 process to solicit and incorporate stakeholder input."⁵⁷ ASHG has solicited member comments on
- 3 the draft policy and will finalize it in the coming months.

4 The AMA Code of Medical Ethics contains similar sentiments regarding gene therapy and genetic 5 engineering. Opinion 7.3.6, "Research in Gene Therapy & Genetic Engineering," states that genetic 6 manipulation should be reserved for therapeutic purposes, and that efforts to enhance "desirable" 7 characteristics are contrary to the ethical tradition of medicine. It sets out a number of conditions 8 that should be met before physicians engage in research involving gene therapy or genetic 9 engineering, including evidence that the intervention will be safe and effective, that no other 10 suitable or effective therapies are available, and that it is restricted to somatic cells. The full 11 opinion is in the Appendix. The Council believes that the principles set forth in Opinion 7.3.6 12 should guide AMA policy on genome editing. 13

14

Costs and Health Disparities

15 16 As is the case for many expensive therapies, access problems are likely to occur if genome editing-17 based gene therapies become viable clinical options. Use of the first gene therapy product approved by the EMA, Glybera, has been limited to only one patient because it carries a price tag of more 18 19 than \$1 million. It was covered by the patient's insurance company, but only after her physician 20 worked intensely to obtain authorization.¹⁶ It is not known what the cost of the newly EMAapproved gene therapy Strimvelis will be, but its manufacturer, GlaxoSmithKline, has stated that it 21 will be "significantly less" than the \$1 million mark.¹⁶ According to the manufacturer of Glybera, 22 UniQure, the high cost of gene therapy drugs is based on the substantial development costs, the fact 23 that the market for the rare diseases they treat is exceptionally small, and in Glybera's case, that it 24 is administered only once, rather than repeatedly over a period of time.⁵⁸ Compared to the \$250,000 25 per year average cost of other orphan drugs that treat rare diseases, a one-time dose of a \$1 million 26 27 drug could be considered cost-saving. However, that cost is so high that it is unlikely patients who 28 need the therapies could afford them, or that insurance companies would authorize payment. This 29 undoubtedly would create health disparities issues, in which only the wealthiest patients, or those 30 fortunate enough to have coverage through insurers who will approve the therapy, could have 31 access to it. Although Glybera and Strimvelis are based on transgene expression rather than 32 permanent genome modification, it is reasonable to assume that genome editing-based gene 33 therapies would have similarly expensive development processes, leading to high costs for patients. 34

- 35 CONCLUSIONS
- 36

37 The last few years have seen unprecedented progress in the development of genome editing 38 mechanisms and their potential applications for gene therapy. While most research is at the 39 preclinical stages, a small number of clinical trials in humans have begun, with others planned for 40 the near future. Much work remains to ensure the safety and effectiveness of genome editing, and questions remain about the appropriate use of germline editing. The Council supports continued 41 42 research into the clinical applications of genome editing, but urges caution and thoughtful 43 consideration before clinical germline editing is undertaken. The Council also urges continued 44 work to develop international consensus standards for permissible therapeutic uses of germline 45 editing.

- 4647 RECOMMENDATIONS
- 48

8

The Council on Science and Public Health recommends that the following statements be adopted and the remainder of the report be filed. 1 2

- 2 1. That our American Medical Association (AMA) encourage continued research into the
- 3 therapeutic use of genome editing. (New HOD Policy)
- 4 2. That our AMA urge continued development of consensus international principles, grounded in
- science and ethics, to determine permissible therapeutic applications of germline genomeediting. (New HOD Policy)

Fiscal Note: Less than \$1000

REFERENCES

- 1. American Medical Association Council on Science and Public Health. Report 4-I-12. Clinical Application of Next-Generation Genomic Sequencing. Summary available at <u>http://www.ama-assn.org/ama/pub/about-ama/our-people/ama-councils/council-science-public-health/reports/2012-reports.page</u>. Accessed 8-10-16.
- 2. Johansen Taber KA, Dickinson BD, Wilson M. The promise and challenges of nextgeneration genome sequencing for clinical care. *JAMA Intern Med.* 2014;174(2):275-80.
- 3. Porteus MH. Towards a new era in medicine: therapeutic genome editing. *Genome Biol.* 2015;16:286.
- 4. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. *Science*. 2014;346(6213):1258096.
- 5. Doudna JA. Genomic engineering and the future of medicine. JAMA. 2015;313(8):791-2.
- 6. Baltimore D, Berg P, Botchan M, et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. *Science*. 2015;348(6230):36-8.
- 7. Naldini L. Gene therapy returns to center stage. Nature. 2015;526(7573):351-60.
- 8. Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. *Science*. 1995;270(5235):475-80.
- 9. Malech HL, Ochs HD. An emerging era of clinical benefit from gene therapy. *JAMA*. 2015;313(15):1522-3.
- 10. Hacein-Bey Abina S, Gaspar HB, Blondeau J, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. *JAMA*. 2015;313(15):1550-63.
- 11. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. *N Engl J Med.* 2014;371(16):1507-1517.
- 12. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. *N Engl J Med.* 2008;358(21):2240-2248.
- 13. Nathwani AC, Reiss UM, Tuddenham EG, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. *N Engl J Med.* 2014;371(21):1994-2004.
- 15. European Medicines Agency. Strimvelis: EPAR summary for the public. Available at: <u>http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-</u>_____Summary_for_the_public/human/003854/WC500208202.pdf. Accessed 8-10-16.

- 16. Staton T. Can other gene therapy developers avoid Glybera's fate? *Fierce Pharma*, May 4, 2016. Available at <u>http://www.fiercepharma.com/pharma/glybera-s-a-flop-how-can-other-gene-therapy-developers-avoid-fate</u>. Accessed 8-10-16.
- 17. Bio IT World. FDA Grants Breakthrough Status to Gene Therapy for First Time. Apr 10, 2014. Available at: <u>http://www.bio-itworld.com/2014/4/10/fda-grants-breakthrough-status-gene-therapy-first-time.html</u>. Accessed 8-10-16.
- 18. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. *Nat Med*. 2015;21(2):121-31.
- 19. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. *Cell*. 2014;157(6):1262-78.
- 20. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science*. 2012;337(6096):81621.
- 21. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. *Nat Biotechnol.* 2014;32(4):347-55.
- 22. Calos MP. The CRISPR way to think about Duchenne's. JAMA. 2016;374(17):1684-6.
- 23. Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. *Science*. 2016;351:400-3.
- 24. Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. *Science*. 2016;351:403-7.
- 25. Tabebordbar M, Zhu K, Cheng JK, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. *Science*. 2016;351:407-11.
- 26. Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. *Cell Stem Cell*. 2013;13(6):653-8.
- 27. Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5 stem cell. *Nat Med.* 2012;18(4):618-23.
- Regelado A. CRISPR Gene Editing to Be Tested on People by 2017, Says Editas. *MIT Technology Review*, Nov 5, 2015. Available at: <u>https://www.technologyreview.com/s/543181/crispr-gene-editing-to-be-tested-on-people-by-2017-says-editas/</u>. Accessed 8-10-16.
- 29. National Cancer Institute Surveillance, Epidemiology, and End Results Program. SEER Stat Fact Sheets: Cancer of Any Site. Available at http://seer.cancer.gov/statfacts/html/all.html. Accessed 8-10-16.
- 30. Tsai AK, Davila E. Producer T cells: Using genetically engineered T cells as vehicles to generate and deliver therapeutics to tumors. *Oncoimmunology*. 2016;5(5):e1122158.
- 31. Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. *Clin Transl Immunology*. 2014;3(5):e16.

- Reardon S. First CRISPR clinical trial gets green light from US panel. *Nature News*, Jun 22, 2016. Available at: <u>http://www.nature.com/news/first-crispr-clinical-trial-gets-green-light-from-us-panel-1.20137</u>. Accessed 8-10-16.
- Fan S. CRISPR Targets Cancer in First Human Trial What You Need to Know. Singularity Hub, Jun 26, 2016. Available at: <u>http://singularityhub.com/2016/06/26/75-</u> crispr-targets-cancer-in-first-human-trial-what-you-need-to-know/. Accessed 8-10-16.
- Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. *Nature News*, Jul 21, 2016. Available at: <u>http://www.nature.com/news/chinese-scientists-to-pioneer-first-human-crispr-trial-1.20302</u>. Accessed 8-10-16.
- 35. Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. *N Engl J Med*. 2014;370(10):901-10.
- 36. Lin SR, Yang HC, Kuo YT, et al. The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. *Mol Ther Nucleic Acids*. 2014;3:e186.
- Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. *Mol Ther*. 2013;21(10):1889-97.
- 38. Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-offunction mutations in PCSK9 and identification of a compound heterozygote. *Am J Hum Genet*. 2006;79(3):514-23.
- Hooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. *Atherosclerosis*. 2007;193(2):445-8.
- 40. Stein EA, Swergold GD. Potential of proprotein convertase subtilisin/kexin type 9 based therapeutics. *Curr Atheroscler Rep.* 2013;15(3):310.
- 41. Ding Q, Strong A, Patel KM, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. *Circ Res.* 2014;115(5):488-92.
- 42. Fazio S, Tavori H. Peeking into a cool future: genome editing to delete PCSK9 and control hypercholesterolemia in a single shot. *Circ Res.* 2014;115(5):472-4.
- 43. Church G. Perspective: encourage the innovators. Nature. 2015;528(7580):S7.
- 44. Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. *Science*. 2016;351(6268):84-8.
- 45. Kleinstiver BP, Pattanayak V1 Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. *Nature*. 2016;529(7587):490-5.
- 46. Fellows MD. Targeting safety in the clinic for precise genome editing using CRISPR: a genotoxicologist's perspective. *Personalized Med.* 2016;13(4):279-82.
- 47. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene. 2013;525(2):162-9.

- 48. Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. *Nature*. 1988;332(6162):323-7.
- Zuris JA, Thompson DB, Shu Y, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. *Nat Biotechnol*. 2015;33(1):73-80.
- 50. Kormann MS, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. *Nat Biotechnol*. 2011;29(2):154-7.
- 51. Liang P1, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. *Protein Cell*. 2015;6(5):363-72.
- 52. Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. *Cell*. 2014;156(4):836-43.
- 53. Lander ES. Brave New Genome. N Engl J Med. 2015;373(1):5-8.
- 54. Hampton T. Ethical and Societal Questions Loom Large as Gene Editing Moves Closer to the Clinic. *JAMA*. 2016;315(6):546-8.
- 55. The National Academies of Sciences, Engineering, and Medicine. Meeting in Brief: International Summit on Human Gene Editing, A Global Discussion. Dec 1-3, 2015. Available at: <u>http://www.nap.edu/read/21913/chapter/1</u>. Accessed 8-11-16.
- 56. The National Academies of Sciences, Engineering, and Medicine. Human Gene-Editing Initiative: Consensus Study. Available at: <u>http://www.nationalacademies.org/gene-editing/consensus-study/index.htm</u>. Accessed 8-11-16.
- 57. American Society of Human Genetics. ASHG Policy Statement on Human Germline Genome Editing. Available at: <u>http://www.ashg.org/pdf/policy/Germline-genome-editing_draft_20160627.pdf</u>. Accessed 8-11-16.
- Kitamura M. World's Most Expensive Medicine: Is it Worth the Price? *Bloomberg*, May 20, 2015. Available at: <u>http://www.bloomberg.com/news/articles/2015-05-21/world-s-most-expensive-medicine-faces-first-test-in-germany</u>. Accessed 8-11-16.

Figure. The genome editing process.

A nuclease engineered to cleave genomic DNA at a precise location is inserted into the cell. Once the DNA is cut, the cell uses either non-homologous end-joining (NHEJ) or homologous recombination (HR) to repair the cut. In NHEJ, the two ends of the DNA strand that have been cut are directly rejoined, but this process results in the insertion or deletion of a small number of nucleotides, disrupting normal gene function. In HR, an exogenous DNA fragment containing a new gene or a corrected sequence of nucleotides, along with sequences that match those surrounding the site of the DNA cut, is inserted into the cell. The cell uses the exogenous DNA fragment as a template to repair the cut, incorporating the sequence present into the genomic DNA, correcting a mutation or inserting a functional gene. (Figure adapted from http://www.calyxt.com/technology/targeted-genome-editing/.) Appendix. AMA Code of Medical Ethics, 7.3.6, Research in Gene Therapy & Genetic Engineering

Gene therapy involves the replacement or modification of a genetic variant to restore or enhance cellular function or the improve response to nongenetic therapies. Genetic engineering involves the use of recombinant DNA techniques to introduce new characteristics or traits. In medicine, the goal of gene therapy and genetic engineering is to alleviate human suffering and disease. As with all therapies, this goal should be pursued only within the ethical traditions of the profession, which gives primacy to the welfare of the patient.

In general, genetic manipulation should be reserved for therapeutic purposes. Efforts to enhance "desirable" characteristics or to "improve" complex human traits are contrary to the ethical tradition of medicine. Because of the potential for abuse, genetic manipulation of nondisease traits or the eugenic development of offspring may never be justifiable.

Moreover, genetic manipulation can carry risks to both the individuals into whom modified genetic material is introduced and to future generations. Somatic cell gene therapy targets nongerm cells and thus does not carry risk to future generations. Germ-line therapy, in which a genetic modification is introduced into the genome of human gametes or their precursors, is intended to result in the expression of the modified gene in the recipient's offspring and subsequent generations. Germ-line therapy thus may be associated with increased risk and the possibility of unpredictable and irreversible results that adversely affect the welfare of subsequent generations.

Thus in addition to fundamental ethical requirements for the appropriate conduct of research with human participants, research in gene therapy or genetic engineering must put in place additional safeguards to vigorously protect the safety and well-being of participants and future generations.

Physicians should not engage in research involving gene therapy or genetic engineering with human participants unless the following conditions are met:

- (a) Experience with animal studies is sufficient to assure that the experimental intervention will be safe and effective and its results predictable.
- (b) No other suitable, effective therapies are available.
- (c) Gene therapy is restricted to somatic cell interventions, in light of the far-reaching implications of germ-line interventions.
- (d) Evaluation of the effectiveness of the intervention includes determination of the natural history of the disease or condition under study and follow-up examination of the participants' descendants.
- (e) The research minimizes risks to participants, including those from any viral vectors used.
- (f) Special attention is paid to the informed consent process to ensure that the prospective participant (or legally authorized representative) is fully informed about the distinctive risks of the research, including use of viral vectors to deliver the modified genetic material, possible implications for the participant's descendants, and the need for follow-up assessments.

Physicians should be aware that gene therapy or genetic engineering interventions may require additional scientific and ethical review, and regulatory oversight, before they are introduced into clinical practice.